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Linear stability of a binary mixture buoyant return flow in a differentially heated inclined infinite layer is
investigated by asymptotic long-wave analysis and pseudospectral Chebyshev numerical solutions. The Soret
coefficient is negative so that thermodiffusion separates the species with the heavier component migrating to
the hot wall, thus, promoting unstable stratification except in the classical Rayleigh-Benard arrangement. It is
shown that longitudinal instabilities with small wave numbers are triggered at any finite temperature difference
at all angles of inclination except very close to the horizontal heated from the above or below arrangements.
Numerical results are given for a specific water-ethanol mixture and are in excellent agreement with the
asymptotic results. As is well known the heated from below horizontal layer is overstable while that heated
from above is doubly-diffusive unstable. Transition from the longitudinal stationary instabilities in inclined
layers to these instabilities in horizontal layers is also given for this mixture.
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I. INTRODUCTION

Differentially heated layer convective instabilities have
been the subject of many studies not only because of its
importance in geophysics and technological applications but
also because it serves as a paradigm for pattern formation
and symmetry-breaking bifurcations. Linear theory, nonlin-
ear simulations, and experiments with pure liquids in in-
clined layers have shown that buoyant longitudinal instabili-
ties �rolls with axis parallel to the slot� are preferred below a
critical angle of inclination where shear driven transverse
�rolls with axis perpendicular to the slot� convection be-
comes more critical �1,2�. Binary fluid double-diffusive in-
stabilities have also received considerable attention when
thermodiffusional effects are neglected �3�.

The theory of convective instabilities driven by a tem-
perature difference imposed on a homogeneous binary mix-
ture contained in a horizontal layer, including the Soret ef-
fect, heated from above or below, continues to attract
attention �4,5�. The thermodiffusional mass flux creates a
vertical concentration gradient that contributes to unstable
�stable� stratification if separation is negative �positive� so
that the heavier component migrates to the hot �cold� wall.
While the heated from above case is double-diffusive un-
stable with zero wave number when separation is negative
�4–7�, it has been utilized to measure both positive and nega-
tive Soret coefficients �8–10�.

A temperature difference imposed on a binary mixture in
a vertical slot generates a return buoyant flow, a horizontal
Soret mass flux, and hence a vertical concentration gradient.
This gradient contributes to unstable �stable� stratification if
separation is negative �positive� so that the heavier compo-
nent migrates to the hot �cold� wall and is convected upward.
This forms the basis of the thermogravitational column
where the thermodiffusion coefficient is inferred from the
measured weak molecular separation along with the equa-

tions that describe the assumed stable steady-state return
flow. This weak vertical concentration gradient can be sub-
stantially enhanced, thereby improving the measurement ac-
curacy, by inclining the column �11� while heating from
above to presumably enhance the stability of the return flow.
However, when separation is negative, linear stability analy-
sis of a vertical layer predicts stationary longitudinal convec-
tive instabilities with zero wave number driven by diffusion
in the direction normal to the imposed temperature gradient
at any temperature difference �12� in complete agreement
with �13�, where the adverse density gradient is imposed on
the layer and not as a result of the layer dynamics.

In this paper we investigate the linear stability of the
buoyant return flow in a side-heated infinite inclined slot
when separation is negative. An asymptotic analysis in the
long-wave approximation shows that zero wave number sta-
tionary longitudinal convection is triggered at any tempera-
ture difference when the layer is not horizontal. A long-wave
asymptotic analysis is also performed for a horizontal layer
heated from above to determine the critical two-dimensional
double-diffusive state. Results of the approximate analyses
are confirmed by numerical solutions of the linear stability
eigenvalue problem for a particular water-ethanol mixture.
Numerical results are also given for the same mixture but
assuming negligible Soret effect in order to demonstrate the
dramatic influence of negative separation. The transition
from stationary longitudinal instabilities in an inclined layer
to either overstable convection in a heated from below hori-
zontal layer or to stationary double-diffusive convection in a
heated from above horizontal layer is also elucidated and
shows that the long-wave regime terminates very close to the
horizontal arrangements. Thus the results of this research are
important to achieve accurate measurements of the Soret and
thermodiffusional coefficients in horizontal, vertical, and in-
clined layers.

II. FORMULATION

We consider the infinite inclined layer of width l shown in
Fig. 1. The isothermal no-slip no-mass flux boundaries are*zebib@rutgers.edu
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maintained at a temperature difference �T. We assume linear
variation in the density with temperature and concentration
of the lighter component,

�� = �0�1 − ��T� − T0� − ��C� − C0��, � � 0, � � 0,

�1�

where starred quantities are dimensional and subscript 0 de-
notes a reference state. The mass flux can be written in the
form �14�

J�� = − ���D � C� + DT � T�� , �2�

where D is the isothermal diffusion coefficient and DT is the
thermodiffusion coefficient. The motion is described in the
Cartesian coordinates �x ,y ,z� of Fig. 1. The variables are
scaled with l , �

l , l2

� ,�T , ��T
� for length, velocity, time, tem-

perature, and concentration, respectively, where � is the ther-
mal diffusivity. The nondimensional Boussinesq equations
become �12�

� · u� = 0, �3�

Du�

Dt
= − �p + Pr �2u� + Pr Ra�T + C�n̂ , �4�

DT

Dt
= �2T , �5�

DC

Dt
=

1

Le
�2C −

�

Le
�2T . �6�

Here the Prandtl number Pr= �
� , the Lewis number Le= �

D , the
Rayleigh number Ra= g�l3�T

�� , where � is the kinematic vis-
cosity. The separation ratio �= −�DT

�D 	0 is the ratio of the
concentration and temperature-driven density gradients in a
steady diffusive state and the light component migrates to the
hot �cold� wall according to ��0 ��	0�. The boundary con-
ditions at x=0 and 1 are

u� = 0,
�C

�x
− �

�T

�x
= 0, �7�

and T�x=0 = 0, T�x=1 = 1. �8�

Equations �3�–�8� admit the basic steady return flow �12�,

T = x, C = f�x� + 
z, u� = W�x�k̂ , �9�

where k̂ a unit z vector and primes denote x derivatives, and
along with the global conservation conditions

�
0

1

Wdx = 0, �
0

1 �WC −



Le
�dx = 0, �10�

we have

W = − ��, f� = � − 
Le� , �11�

and the stream function ��x� satisfies

�iv + 
LeRa cos �� − Ra	�1 + ��cos � + 
 sin �


= 0, ��x=0,1 = ���x=0,1 = 0, �12�

with H � �
0

1

�dx, K � �
0

1

�2dx, 
 =
�HLe

1 + Le2K
.

�13�

Here 
 is the induced constant concentration gradient along
the layer. Given Ra and 
 �or �� Eqs. �12� and �13� are
solved iteratively for � �or 
�. It is noted that W=�=0, 

=0, and f�=� when the layer is horizontal, i.e., �= 90°.

Linear instability of this basic flow is investigated by as-
suming perturbations 	u ,v ,w , p ,� ,�
�x�ei�kyy+kzz�+�t for the
velocity components, pressure, temperature, and concentra-
tion, respectively; ky and kz are the longitudinal and trans-
verse wave numbers, respectively �we note here that the
terms longitudinal and transverse were unfortunately trans-
posed in �12��. The linear stability equations similar to those
in �12� with d=d /dx become

du + ikyv + ikzw = 0, �14�

	Pr�d2 − k2� − ikzW
u − dp − Pr Ra�� + ��sin � = �u ,

�15�

	Pr�d2 − k2� − ikzW
v − ikyp = �v , �16�

	Pr�d2 − k2� − ikzW
w − W�u − ikzp + Pr Ra�� + ��cos �

= �w , �17�

	�d2 − k2� − ikzW
� − u = �� , �18�

� 1

Le
�d2 − k2� − ikzW� −

�

Le
�d2 − k2�� − f�u − 
w = �� ,

�19�

where k2=ky
2+kz

2 and the boundary conditions at x=0 and 1
are

u = v = w = � = d� − �d� = 0. �20�

Numerical solutions of Eqs. �14�–�20� are obtained by a
Chebyshev pseudospectral method. For each Le, Pr, �, and �

x

y

z

n̂

�

g

*T T� �

*T 0�

l

FIG. 1. The model and coordinate system.
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we calculate the neutral Ra, ky, kz, and 
 so that
max	Re���Ra,ky ,kz ,
 ;Le,Pr,� ,���
=0 in order to delineate
the instability region. For each value of Ra the nonlinear
algebraic system given by Eqs. �12� and �13� is first solved
iteratively for 
, W�x�, and f��x� before the eigenvalues � are
computed. The critical state is determined by minimization
of the neutral Ra with respect to ky and kz.

III. RESULTS AND DISCUSSIONS

Numerical results will be given for a mixture of 78%
water—22% ethanol �15� for which �=−0.118, Le
=443.8, Pr=5.55. However in order to demonstrate the im-
portance of the Soret effect we also give results for the same
mixture but neglecting thermodiffusion, i.e., setting �=0.

A. Homogeneous water-ethanol mixture with ε=0

In order to show the dramatic influence of thermodiffu-
sion we first display results in Fig. 2 for the same mixture but
with �=0 and hence 
=0 from Eq. �13�. With kz=0 in Eqs.
�14�–�20� it follows that �=0 so that the longitudinal critical
Ra= Ra�90°�

sin � at ky =3.11, where Ra�90°�=1707.76. The trans-
verse branch is obtained with ky =0 and again it follows from
Eqs. �14�–�20� that �=0. It is multivalued S shaped, similar
to that for water �16� due to the appearance of disconnected
closed neutral curves for 66° ���67.5°. It is also observed
that the transverse Ra→� as heating from above �→−90°,
with no species separation, is approached. One notes that the
initially homogeneous mixture behaves as a pure liquid in
the absence of thermodiffusion with �=0.

B. Water-ethanol ε=−0.118, Le=443.8, Pr=5.55

It was shown in �12� that the vertical slot �=0 is unstable
to stationary long wave, �=0, longitudinal modes �kz=0,ky
→0� at any Ra�0. Here we need to consider the influence
of � on a similar long-wave analysis,

− 90 ° 	 � 	 90 ° .

With �=kz=0 we assume the expansion

�u,v,w,p,�,�,Ra� = �
n=0

�

�un,vn,wn,pn,�n,�n,Rn�ky
n, ky → 0,

�21�

with boundary conditions from Eq. �20� at x=0 and 1,

un = vn = wn = �n = d�n − �d�n = 0. �22�

Because diffusion dominates convection when Ra→0 it fol-
lows from Eq. �13� that


 � �HLe. �23�

Moreover the exact solution of Eq. �12� gives �see Eq. �A5�
in �12��

H � Ra	�1 + ��cos � + �
 sin ��


�� 1

720
−


LeRa cos �

4 � 90 720
+ ¯� , �24�

Thus, we have


 �
�	�1 + ��cos � + �
 sin ��
Le

720
Ra. �25�

Equations �21� and �25� show that on the neutral curve we
also have the expansion


 = �
n=0

�


nky
n, ky → 0. �26�

We now substitute Eqs. �21� and �26� in the linear stability
Eqs. �14�–�19�. At zeroth order we find using boundary con-
ditions �22�,

u0 = v0 = w0 = �0 = R0 = 
0 = 0, �0 = constant, p0

= constant. �27�

At first order we find

u1 = �1 = 0, �1 = constant,

v1 =
ip0

2 Pr
�x2 − x�, w1 =

− R1�0 cos �

2
�x2 − x� ,

p1� = − Pr R1�0 sin � . �28�

At second order we obtain u2�+ iv1=0 and the two compat-
ibility conditions

�
0

1

v1dx = 0 and �
0

1


1w1dx =
− �0

Le
, �29�

so that

u2 = v1 = �2 = 0, R1 =
− 12


1Le cos �
. �30�

It can be shown from Eqs. �21� and �25�–�27� that 
1

= ��1+��Le cos �
720 R1 so that Eq. �30� gives

Ra �
24

Le cos �
� − 15

��1 + ��
ky , �31�

( )degrees�

Ra
T

L

FIG. 2. Stability boundaries with �=0, Le=443.8, Pr=5.55.
Shown are the transverse �T� and longitudinal �L� with Ra= Ra�90°�

sin �
branches.
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 � −�− ��1 + ��
60

ky . �32�

Full numerical solutions of these longitudinal instabilities are
shown in Fig. 3 for �= 80 and 0. They are indeed found
stationary and there is excellent agreement with the
asymptotic results of Eqs. �31� and �32� as ky→0 for all
−80���80.

Figure 4 gives numerical neutral curves as function of �
for several small values of ky. Note that Eq. �31� implies
symmetry about �=0 at this order of approximation and that
Figs. 3 and 4 are very close to satisfying this symmetry as
ky→0.

In the basic state we have from Eqs. �1�, �9�, and �11�

l

��T

��

�n
= − ��T + �C� · n̂ , �33�

=sin � + �� − 
Le��sin � − 
 cos � .

�34�

It follows that the basic state ��
�n �0 for ��0 since 
	0 and

��0 and, hence, the Wooding �14� instability is operative.

However ��
�n 	0 on the stability boundaries of Fig. 4 for �

	0 because the temperature contribution, the first term in
Eq. �34�, overwhelms that by the concentration, the next two
terms in the equation. In fact ��

�n =0 on the ky =0.01 stability
boundary of Fig. 4 when ��−0.03°. Yet the flow is unstable
for �	0 to the long longitudinal waves in Fig. 3 and Eqs.
�31� and �32�. This is because the large Le concentration
fluctuations persist while temperature perturbations equili-
brate much faster. Thus remarkably the Wooding instability
is also operative for �	0.

The transverse modes are more stable and their stabilizing
influence on the longitudinal instabilities with ky =0.01 is
shown in Fig. 5. In comparison with Fig. 2 with zero sepa-
ration, the �	0 thermodiffusional instabilities in Figs. 3–5
cannot be suppressed and are triggered at Ra�0,

� = − 90 ° .

The heated from above case �=−90° is doubly-diffusive
unstable at zero wave number �4–7�. Accordingly we set
�=kz=W=
=0 so that w=0 �because this instability is two

yk

Ra
o80δ =

o80−

o0

( )oAsymp 80±

( )oAsymp 0

FIG. 3. Neutral curves of longitudinal modes �kz=0� with �
= 80 and 0. Also shown are the asymptotic values from Eq. �31�
with excellent agreement as ky→0.

�

Ra

100

Le 10�

1000

FIG. 6. Stability boundaries for heating from above with
�=−90°, kz=0, and ky =0.001. The asymptotic values given by Eq.
�38� are indistinguishable from the numerical ones on these scales.

( )degrees�

.yk 0 01�

Ra

.0 03

.0 04

.0 02

FIG. 4. Stability boundaries of stationary longitudinal modes
with kz=0. The flow is unstable for Ra�0.

( )degrees�

Ra

.zk 0 01�

.0 03

.0 04

.0 02

FIG. 5. The stabilizing influence of small transverse components
on longitudinal modes with ky =0.01. All branches are stationary.
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dimensional we can proceed with �=ky =v=0�. We assume
the same expansion and boundary conditions given by Eqs.
�21� and �22�. At zeroth order Eqs. �14�–�19� give

u0 = v0 = �0 = 0, �0 = constant, p0� = Pr R0�0. �35�

At first order we find

u1 = �1 = 0, �1 = constant, v1� =
ip0

Pr
. �36�

At second order we obtain u2�+ iv1=0 and the two compat-
ibility conditions

�
0

1

v1dx = 0 & �
0

1

�u2dx =
− �0

Le
. �37�

Thus from Eqs. �35� and �36� we find v1= iR0�0� x3

6 − x2

4 + x
12�

and u2=
R0�0

24 �x4−2x3+x2� so that

Ra �
− 720

�Le
, kz = 0, ky → 0. �38�

This asymptotic value is also valid with ky =0 and kz→0.
Figure 6 shows numerical stability boundaries with kz=0 and
ky =0.001 as functions of � and Le. Also shown are the
asymptotic values given by Eq. �38� that are seen to be in-
distinguishable on the scales of the figure. These results are
also in excellent agreement with �5,17�.

Full numerical solution with kz=0 and ky =0.01 is given in
Fig. 7 and shows how the two asymptotic solutions in Eq.
�31� and �38� merge near �=−90°,

� = 90 ° .

Finally heating from below with �=90° �4,5� is stabilized
relative to ordinary Rayleigh-Benard convection and is over-
stable at Ra�1923.6; ky �3.13 and kz=0.0 �or ky =0.0 and

kz�3.13�; �i�6.92. Full numerical solution near �=90° is
shown in Fig. 8 where the stationary long-wave regime is
seen to end at ��89.95°.

IV. CONCLUDING REMARKS

A linear stability study of the thermodiffusional driven
return flow of a binary fluid with negative separation in a
side-heated infinite inclined layer was performed. Results
from both numerical solutions and long-wave approxima-
tions when ��90° are in excellent agreement. It is shown
that the critical Ra for these long-wave longitudinal instabili-
ties is zero. The heated from above case �=−90° is doubly-
diffusive unstable since the Le�1. The zero wave number,
stationary, and longitudinal Wooding instabilities at zero Ra
are present when �� 90°. This is because the basic steady
return flow is unstably stratified with ��

�n �0 when 90° ��
�0°. They are also present even if it is stably stratified with
��
�n 	0 when 0° 	�	−90° thanks to the double-diffusive
mechanism that diminishes the influence of the stabilizing
temperature relative to the destabilizing concentration pertur-
bations.

The asymptotic Eqs. �31� and �38� giving, respectively,
critical values of Ra for an inclined layer and a heated from
above horizontal layer should be very helpful to experimen-
talists when designing thermogravitational columns and
Soret cells.

An important conclusion of the present work is that the
Soret effect cannot be ignored no matter how small is the
negative separation. The implication of our results to thermo-
gravitational columns and Soret cells of finite extent in the x
and y directions needs to be investigated by direct simula-
tions of the full nonlinear three-dimensional time-dependent
equations.
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( )degrees�

Ra

FIG. 7. Stability boundary with kz=0 and ky =0.01 showing the
merger of the two stationary long-wave instabilities given asymp-
totically by Eqs. �31� and �38�.

( )degrees�

Ra

FIG. 8. Stability boundary with kz=0 and ky =0.01 showing the
end of the stationary long-wave regime Eq. �31� near �=90°.
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